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Abstract

In this paper replacement beams of building structures are developed, and the stiffnesses of the replacement beams are
derived. The analysis is robust and can be used for slender and wide structures consisting of frames, trusses, shear walls,
or coupled shear walls. The utility of the derived replacement beam is demonstrated through the examples of the in
plane and flexural-torsional buckling and vibration analyses of high-rise buildings.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Analysis of high-rise building structures stiffened by shear walls, trusses, coupled shear walls, and frames
requires time consuming numerical computations. The designer may be well served by approximate
methods, which (i) can be used in the preliminary design when some of the structural dimensions are not yet
known, (ii) can verify the results of the more advanced numerical calculation, and, last but not least (iii) can
shed light on the behavior of the structure which may lead to a better design.

One of the most widely used approximate calculations is based on the “continuum method” (Zalka,
2000b), when the stiffened building structure is replaced by a (continuous) beam.

The simplest replacement beam is a thin-walled beam, characterized by the bending stiffnesses (Dy,,,
Dsy.., Dy,.), the warping stiffness (D,,) and the torsional stiffness (D;). When only a plane problem is con-
sidered, torsion is excluded, and the only parameter that plays a role is the bending stiffness Dy = Dy, in the
x—z symmetry plane. This model is adequate only for solid and slender shear walls.

When a truss is loaded laterally, it may show, depending on the stiffnesses of the elements, bending
(flexural) deformation, shear deformation, or the mixture of those (Fig. 1).
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Fig. 1. Flexural deformation, shear deformation, and mixed deformation.

Hence the shear deformation must be included and the replacement continuum is a 7imoshenko-beam
(Timoshenko and Gere, 1961), characterized by the bending (D, = D,,,) and the shear stiffnesses (S = S..) in
the x—z plane. The bending and the shear stiffnesses of typical structures are given e.g. in Timoshenko and
Gere (1961), Stafford Smith and Coull (1991) and Kopecsiri and Kollar (1999a,b) and are listed in Table 1.

Neither a thin-walled beam, nor a Timoshenko-beam is adequate to characterize a frame, or coupled
shear walls. The replacement beam can be obtained by “smearing out” the beams of the frame along the
height, and thus we arrive at the model shown in Fig. 2, which is a sandwich beam (Skattum, 1971).

The stiffnesses of the replacement sandwich beam are also included in Table 1 (Hegedis and Kollar,
1999; Szerémi, 1978; Csonka, 1965; Beck, 1962), D, is the global bending stiffness, D) is the local bending
stiffness, and S is the shear stiffness).

It is important to note that a sandwich beam with stiffnesses Dy, Dy, and S is equivalent to a Timoshenko-
beam (with stiffnesses Dy and S) which is supported laterally by a beam with bending stiffness D; (Fig. 2).
Hence, if we set the stiffness Dy of a sandwich beam equal to zero we obtain a Timoshenko-beam with
stiffnesses D, and S.

Continuum models were developed by several authors and it was applied successfully for building
structures subjected to wind loads (Csonka, 1965; Stafford Smith and Coull, 1991; Szerémi, 1978; Zalka,
2000a,b), earthquakes (Basu, 1983; Basu et al., 1984; Kopecsiri and Kolldr, 1999a,b; Kollar, 1991; Stafford
Smith and Coull, 1991), in the dynamic analysis (Ng and Kuang, 2000; Rosman, 1973, 1974; Skattum,
1971; Zalka, 1993, 1994, 2000a,b, 2001), and in the stability analysis (Hegedlis and Kollar, 1999; Li, 2000;
Rosman, 1973, 1974; Stafford Smith and Coull, 1991; Zalka, 1998, 1999, 2000a,b; Zalka and Armer, 1992).

However, there are two important problems to be solved:

(1) As we stated before the replacement beam of a single lateral load-resisting subsystem (truss, frame,
shear wall, etc.) is given in the literature (see Table 1). When there are several parallel lateral load-resisting
subsystems which are connected horizontally along the height the question arises: how can they be replaced
by only one replacement beam? We find answers only for the following special cases in the literature: (a)
When each lateral load-resisting subsystem is a solid wall (their shear deformation is neglected) the re-
placement beam is a beam which undergoes bending deformation only, and its bending stiffness is the sum
of the bending stiffnesses of the individual walls. (b) When there are frames which can be modeled as beams
undergo shear deformation only and solid walls undergo bending deformation only, the replacement beam
has two stiffnesses (with the sandwich notation D; and S, while D, is infinite), the bending stiffness is the sum
of the bending stiffnesses of the walls, while the shear stiffness is the sum of the shear stiffnesses of the
frames. However, when any of the lateral load-resisting subsystem undergoes both bending and shear
deformation (which is the case of trusses, coupled shear walls, tall frames, and for wide walls) it can be
shown that simple summation (S = Y Sy, Dy = > D, Dy = > D) may result in a structure which is stiffer
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Table 1
Replacement stiffnesses of different lateral load-resisting subsystems of high-rise buildings

Structure Replacement continuum stiffnesses
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by orders of magnitudes than the “real” structure. We will show in Section 5 how the replacement stiff-
nesses of the building should be calculated.

(i1) As an example let us consider a structure the cross-section of which is shown in Fig. 4. When the
structure is subjected to torsion, in the two parallel trusses both shear and bending deformations occur. The
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Fig. 2. Replacement beam of a frame (a), the sandwich beam is equivalent to a Timoshenko-beam supported by a beam with bending
deformation only (b).
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Fig. 3. Parallel lateral load-resisting subsystems and the replacement sandwich beam.

trusses

Fig. 4. Plan of a building stiffened by three lateral load-resisting subsystems.

classical (Vlasov) theory of beams does not include the shear deformation in torsion with warping and,
hence, its application may significantly overestimate the torsional stiffness of the structure. This problem,
for arbitrary arrangements of the walls, will be addressed in Section 6.

2. Problem statement

We consider a building structure, that consists of an arbitrary combination of lateral load-resisting
subsystems, i.e. shear walls, coupled shear walls, frames, trusses and cores. The arrangement of the stiffen-
ing system is either symmetrical or arbitrary (Fig. 5).

Our aim is to obtain a replacement beam model and its replacement stiffnesses which can be used in the
wind, earthquake, or stability analyses of the building structure.

The application of the continuum method for the earthquake analysis of building structures can be found
in Potzta (2002). The method is also applicable for replacement beams with varying cross-section using a
simple approximation given in Potzta and Kollar (1999).
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Fig. 5. Symmetrical (a) and unsymmetrical (b) arrangements of the lateral load-resisting subsystems.
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3. Basic assumptions

We assume that the material behaves in a linearly elastic manner.

The floors are considered to be rigid in their plane and they transfer only horizontal forces but no
bending or vertical forces to the lateral load-resisting subsystems. In addition, we assume that the floors
connect the stiffening system “continuously’, hence each cross-section of the building remains undeformed
in the horizontal plane during loading.

4. Error in the analysis
The total error of the suggested method comes from two sources:

(1) Each lateral load-resisting subsystem is replaced by a continuous cantilever beam. The accuracy of this
replacement can be found in the literature (Stafford Smith and Coull, 1991; Zalka and Armer, 1992;
Zalka, 2000a,b). It is recommended that the building must have at least four stories (Zalka, 2000b).

(i1) These beams are then replaced by a single replacement sandwich beam. The error was investigated nu-
merically in Potzta (2002) and it is illustrated in Section 8. It was found that this approximation results
an error which is about 5%.

5. Plane problem

In this section we consider symmetrical stiffening systems which deform only in the plane of symmetry
(x—z plane). The floors connect the lateral load-resisting subsystems continuously, hence the horizontal
displacements of the lateral load-resisting subsystems are identical.

5.1. One lateral load-resisting subsystem

As it was stated in the Introduction, the replacement beam of a lateral load-resisting subsystem is a
sandwich beam. The replacement stiffnesses are summarized in Table 1.
For latter use we define the strain energy of a sandwich beam (Allen, 1969):

U:UT+l]la (l)

where

Ur = % /(SVZ +D0(){I)2) dx, U = % /Dl(wﬂ)z dr. (2)
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Here Ur and U are the strain energies of a Timoshenko-beam (stiffnesses Dy and S) and of a beam with
bending deformation only (stiffness D)), respectively. w is the displacement in the x—z plane, y is the rotation
of the cross-section in the x—z plane, and 7 is the shear strain. Prime denotes derivative with respect to x. y
and 7 are related to the displacement w by

w=y+y. 3)
It can be shown (Hegediis and Kollar, 1999) that in a sandwich beam:
Dy
=2 4
V= (4)

5.2. Several lateral load-resisting subsystems

In this section we consider 7 lateral load-resisting subsystems (Fig. 3). The kth element has the stiffnesses
Do, Dy, and S;. The stiffnesses of the beam which replaces the » lateral load-resisting subsystems are de-
noted by Dy, Dy, and S.

We determine the replacement stiffnesses by applying a sinusoidal displacement on the stiffening system
which is caused by a sinusoidal horizontal load (Fig. 6).

Then we equate the sum of the strain energies of the individual lateral load-resisting subsystems to the
strain energy of the replacement wall. Hence (see Eq. (1)) we write

5 570+ D) =5 [ S (807 + D) + Dulu) (5

Wi, 7%, and y, are the displacement, the shear strain, and the rotation of cross-section of the kth lateral load-
resisting subsystem, and w, y, and y are the displacement, the shear strain, and the rotation of cross-section
of the replacement beam, respectively. The horizontal displacements of the lateral load-resisting subsystems
are identical, hence we can write

WL =Wy = =W, =W (6)
We apply the displacements

LT T
W= wosinx, g = 708X (7)

on the beam. Egs. (3), (4), and (7) yield
® D

T
i LI
ﬁ&W()COSY.)Q Y = B ?X

N

2

/(:1+

~

Fig. 6. The load and the deformations of a sandwich beam subjected to a sinusoidal load.
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By introducing Egs. (6)—(8) into Eq. (5) and performing the integration between 0 and / we obtain

Dy Doy
Dl+1+n2Doiz <D1k+1+TEZDO/<>' (9)

2S k=1

When [/ is large y is small (see Eq. (8)) and Eq. (9) results in

n

Dy + Dy = Z(le + D). (10)
=1
As a consequence we may state that for large / the replacement beam is a beam which undergoes bending
deformation only.
The Taylor series expansion of the function 1/(1 + n?D,/(/>S)) with respect to 1//* about 1/73 is

1 1 £ (1 1>+ (=) (1 1)2
422 142 (1“[22[;0)2 Bk (H%)% P
0
2 i )
=) smlE ) (1)
i=0 (1_|_nlzgo) 0
Introducing Eq. (11) into Eq. (9) yields

i w2y \' i
G5 S )

When [ is close to /y the terms multiplied by (1/72 —1/22)' (i = 1,2,...) vanish and we have

2 i
= Do —%)
Ditd

i+1

0

DOk
7@0—2 Dy + —p |- (12)

To obtain a good agreement between the replacement beam and the structure the first three terms in the
series are considered. By equating the first term in the series we obtain Eq. (12), while from the second and
third terms we have

D ’D 2 D ’D
0 Ly _ Z 0k T Doy 7 (13)
1+ 2Dy > 8 k=1 1+ Doy : Sk
125 125,

DO TEZDO : _ zn: DOk TC2D0k 2. (14)
12Dy 3 S 72Dy 3 Sk
(1) =)

Eqgs. (12)—(14) can be rearranged to yield the replacement stiffnesses of the beam:

B3 1 B
S=m'Z, Dy=t—1g Di=A-"7. (15)

3

S|
=
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where
A _ n DOk
- ) k| >
2\ T
B - Dy Dy
= 1T g (16)
— 2 k
k=1 (1 + “Ilz)s(fk )
n 2
C— Doy ( Doy )
= . 5
k=1 (1 + nlzggi)k ) k

The choice of [, to obtain the “best” replacement stiffnesses will be discussed in Section 7.

6. Spatial problem

As it was stated in the Introduction, the beam undergoes both shear and bending (flexural) deformations
in torsion. We adopt here the beam theory given in Kollar (2001a,b) (which was developed for composite
beams and which is the simplification of Sun and Wu’s theory (Wu and Sun, 1992)). Accordingly, the
displacements of the beam are described by the vectors

v Ly
{fup=qwe, {1}=4 1% ¢ (17)
v g

while the shear deformations are

Ty
(=97 (18)
Us

v and w are the displacements in the y and z directions, V is the rotation of the cross-section about the x axis,
%, and y, are the rotations of the cross-section about the z and y axes, respectively. The total twist per unit
length (1) contains a shear type (9s) and a bending type (Jg) deformation (Fig. 7):

9=y = I + Us.

(We note that in Vlasov’s theory y, =7, = Js = 0 and {u} = {y}.) The shear deformations are related to
the displacements by (see Kollar, 2001a,b)

Fig. 7. Bending (¥3) and shear (Js) deformation in torsion.
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/

v
{uf = 9w o ={p+ {0k (19)
W
The strain energy of this beam is
1 T Syy S}Z Syw T D 0zz D Ozy D 0z ,
UT == E / {V} Szy Szz Szm {V} + {X} DOyz D()yy DOym {X} + DtﬂZ dx (20)
S wz S(uy Sww D 0wz D 0wy D Oww

In this equation Dy, (= EI,), Dy,. (= EIL.), Dy..(= EL.) are the bending stiffnesses, Dy, (= EI,) is the
warping stiffness. (Do, and Dy, are zero if the coordinate system is attached to the shear center see Section
6.3.) [S] is the shear stiffness matrix and D, (= GI,) is the torsional stiffness. { }* denotes the transpose of
vector { }.

The above beam theory is the generalization of the “Timoshenko-beam” theory for spatial problems. For
our case, as in the plane problem, the local stiffnesses must also be included, and the strain energy becomes

U= U+ U, (21)
where U is the strain energy of a beam which undergoes bending deformation only:

D lzz D Lzy D lzw

1 1" "
U=y / (W' Dy, Dy Dy | {u}"dx. (22)
D lowz D loy D low

Here {u} is the displacement vector (Eq. (17)), and Dy; are the (local) bending stiffnesses.
6.1. One lateral load-resisting subsystem

First we consider a single lateral load-resisting subsystem (Fig. 8). )
The stiffness matrices of this bracing element in the #—{ coordinate system are [Df “],, [D!"*], and [S"¢],,
and the torsional stiffness is D . The transformation of the stiffnesses into the y—z coordinate system gives

D], = [T) D] 1T,
[Do]k = [T]Z[Dgig]k[T]kv (23)

(8] = [TRIS"LIT,,

A 7

N >
'rkg‘\/ y
¢

Fig. 8. Global coordinates (y,z) and the local coordinates (1, () attached to the kth lateral load-resisting subsystem.
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cosoy —sinoy iy
[T], = | sinax cosay  r |, (24)
0 0 1

oy is the angle between the axes # and y; 74, and 7y are the distances of the # and { axes from the origin (Fig.
8).

6.2. Several lateral load-resisting subsystems

To obtain the replacement stiffnesses of a stiffening system containing several lateral load-resisting
subsystems we assume the displacements in the form of

Yo T %0 T
{u} = q wo psin—x, {y} = | 1o | cos7x, (25)
l 9 /
Yo BO

and introduce them into the expression of the strain energy of the replacement beam (Eq. (21)) and into the
sum of the strain energies of the individual elements. By equating them we obtain

! /({V}T[S]{V} + {13 Do{x} + {u} " [D{u}" + Do) dx
/Z {3 1S + {03 Do} + e} [Dul{u}” + D) dx. (26)

Then we follow the same steps as in Section 5.2. The algebra is involved but straightforward and is not
presented here. The results are

oo = 81181121 - 1817
Loh @)
D) = 4] - B[] 18],
Dl - iDllm
where

)= "<Qm+%wmww)ﬁmh+wm>
B =S e (154 i) Do (184 Do) Dl

= < IZ )1 ( £ ) (28)
) = _ﬁQﬂ+%wmm;)ummM

TE2

-1 -1
< (1214 T S ) 1 (1814 S5 DL ) - e
0 0
We observe that Eq. (27) reduces to Eq. (15) when [Dy], [Dy], and [S] are replaced by Dy, D; and S.
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6.3. Location of the replacement beam

The elements of the stiffness matrices [Dy], [Di] and [S] depends on the choice of the location of the axis of
the replacement beam which passes through the origin of the coordinate system.

In the analysis the location of the axis can be chosen arbitrarily. (The stiffnesses, loads, coordinates of the
mass center are influenced by the location, however the eigen frequency, buckling loads, internal forces are
not.)

There is a special location of the origin called shear center (or more precisely the “bending deformation
shear center” (Kolldar, 2001a,b)). When the origin of the coordinate system is attached to the bending
deformation shear center the stiffness matrix [Dy] simplifies and Dy, and Dy, are zero. However, this
choice of the origin simplifies the analysis only when the shear deformation is neglected (shear stiffnesses are
infinite), because in this case the load applied at the shear center does not cause the twist of the building.

As a rule, when the beam undergoes both bending and shear deformations there is no such location and
the beam may twist even if the load is applied at the bending deformation shear center.

However for a given load and boundary conditions we may define a location (which varies with the
height) such a way that the load acting at this location do not cause the twist of the building.

When the building is symmetrical, the load which is applied in the symmetry plane does not cause
twist, and hence it is practical (however not necessary) to place the axis of the beam at the symmetry
plane.

7. Practical considerations

In Sections 5.2 and 6.2 we obtained a replacement beam whose stiffnesses depend on the choice of /.
When [, is approximately equal to the variation of the load (see Fig. 6) the behavior of the replacement
beam will be very close to the behavior of the structure. Consequently different replacement beams should
be applied for different loading conditions.

The question arises, how should we choose /; to obtain the “best’ replacement beam. We suggest for a
few cases the values /, which are given in Fig. 9.

We note that there are practical cases when the stiffnesses of the replacement beam are not sensitive to the
choice of /y and hence the same replacement beam can be used for different loading conditions.

When Dy;/S; = Dy, /S; or Sil; > Dy, Eqs. (15) and (16) become

B3

S=c% (29)
BZ

D() == E’ (30)

Dy =Y (Do + Dy) — Dy, (31)
=1

where

LDy Dy

B:;S—k, C:;S_,f' (32)

Note that these equations are identical to Egs. (15) and (16) when /y — oc.
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Lateral load Buckling Vibration
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Fig. 9. The values of [, for lateral load, buckling and vibration.

When S;/; < Dy; Egs. (15) and (16) become

S=Y 8 Dy=o0, Dy=)» Dy (33)
k=1 k=1

These simplifications can be carried out also in case of spatial problems: When [Dy],[S];" ~ [Dy] j[S]._lor
[S].13 > [Dy), Egs. (27) and (28) become

) = (BC) BT B, (34)

D] = B)iC1 ], (39)

)= (004, + 21 - 1) (36)
where

1= YOS I, (€)= Y IDUISE 015K D0l ()

For [S],/3 < [Do] Egs. (27) and (28) become

n

)= Y0k D= o<, D] =Y Ini, )

k=1
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Fig. 10. Numerical example: (a) symmetrical structure, (b) unsymmetrical structure, (c) lateral load-resisting subsystems.

8. Numerical examples

To demonstrate the utility of the replacement beam we consider two simple examples shown in Fig. 10.

8.1. Doubly symmetrical structure

The structure is stiffened by two coupled shear walls, a frame, and two shear walls (Fig. 10a). We
wish to determine in the x—z symmetry plane: (i) the circular frequencies of the structure when the mass
is distributed uniformly along the floors, and (ii) the buckling loads when the load is applied at the
top.
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The replacement stiffnesses of the lateral load-resisting subsystems are (see Table 1):
3
= El;=4x195x 10" x 1.33 x 107 = 1.040 x 10’ Nm’,
i=0

3
= Edac? =2 x 1.95 x 101 x 0.04 x (22 + 6%) = 6.240 x 10" Nm?,

i=0

3 10 -4
12E1,, 12 % 1.95 x 100 x 1.33 x 10
Sy = =3 = 7.672 % 10° N
T T 4% 3.05 8
3 10 —4
12E1, 12 % 1.95 x 10" x 1.33 x 10
- G _ 4 x = 1342 10° N
; [z 3.05? 8
= (5" +85 1) " =4881 x 10° N
Dy =0,
DY = EI, = 1.95 x 10'° x 1.07 = 2.087 x 10" Nm?,
w GAW 1.925><><11;)10 x 0.8 9
§r =T = B =500 10 N, (39)
10
DY = Gy = 22X 107 67 % 102 = 1733 x 10° N,
2x12

1
=3 ElL,=2x1.95x 10" x 1.33 x 10~ = 5.200 x 10° Nm?,

i=0

1
=Y Educ} =2x1.95x 10" x 0.4 x 2> = 6.240 x 10" Nm?,
i=0
OEL[(d +51)" + (d +52)"] 6% 1.95% 101 x 1.07 x 107 x 2 x (2 +2)*

b — =
an(1+ 28 ) 2 x 3.05 (1 + skl sl s )
= 1.468 x 108 N,
12E1,; 12 1.95 x 10'% x 1.33 x 107!
XTI XD XX T 6708 x 10° N,

1
,Z w2 3.052
(S48 =1.436 x 10° N

where superscript f, w, and c refers to the frame, to the walls, to the coupled shear walls, respectively.
The structure is symmetrical, thus the replacement stiffnesses of the structure can be calculated from Egs.
(15) and (16). We choose ly; = 2H, [y, = H and [y; = 2H in the analysis of the first, second and third mode

of vibration, respectively (see Fig. 9). The results are given in Table 2.
Using the replacement stiffnesses we approximate the circular frequencies, ; (in the x—z symmetry plane)

as follows (Potzta, 2002):

-1 -1
1 1 1 1 Dy;
2o — LI (S S 2 Dy 20
" ((w¢o>2+<w5>2> e (u%,-,,?,?;a+us,,,5flz> e )

1 1

where i and pg; for the first three modes are given in Table 3, the mass, M, and the total height of the
building, A are given in Fig. 10. The approximate value of the circular frequencies (Eq. (40)) and the results
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Table 2
Replacement stiffnesses of the symmetrical structure given in Fig. 10
Mode i=1 i=2 i=3
Lo; 2H IH iH
A (x10" kN m?) 1.341 0.7018 0.4077
B (x10'"* kN m*) 7.669 1.220 0.3119
C (x107 kN m°) 107.6 2.535 0.3120
Dy (x10'° kN m?) 9.406 13.29 13.08
Dy; (x10' kN m?) 7.950 1.149 1.047
S; (x107 kN) 3.841 27.87 29.06
Table 3
The values of the multiplier, p, for the calculation of the circular frequencies
Deformation Mode
1 2 3
Bending (vg) 3.52 22.03 61.7
Shear (vg1) 0.51 1.57 2.51
Table 4

Circular frequencies (1/s) of the symmetrical structure (Fig. 10) using a finite element program (ETABS), and the results of four

different approximations

Mode ETABS Sandwich beam Summation of stiffnesses Thin-walled beam Timoshenko-beam
1 0.2649 0.2607 0.290 0.249 0.536
1.206 1.265 1.349 1.168 1.663
3 2.708 2.690 2.767 2.32 2.980
Table 5
Errors in the circular frequencies of the four approximations
Mode Sandwich beam Summation of stiffnesses Thin-walled beam Timoshenko-beam
1 -1.59% 9.48% —6.00% 102.34%
2 4.89% 11.86% -3.15% 37.89%
3 —-0.66% 2.18% -14.33% 10.04%

of a finite element calculation (using the ETABS program) are summarized in the second and third columns
of Table 4, respectively. The maximum error is less then 5% (Table 5).

For comparison we calculated the circular frequencies also with the aid of other replacement beam
models. The fourth column of Table 4 shows the results in case of simple summation of the stiffnesses of
lateral load-resisting subsystems (each replaced by a sandwich beam). The last two columns of Table 4
present the results when the lateral load-resisting subsystems are replaced by thin-walled beams and by
Timoshenko-beams, respectively (the replacement stiffnesses are calculated by Eqgs. (15) and (16)). The

errors are given in Table 5.

The buckling loads of the structure (when the load is applied at the top) also can be approximated using
the replacement stiffnesses (Kolldr, 2001a,b). Buckling loads in the x—z symmetry plane are
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0 -1
D, 1 D
NL = (“ ‘”) + + 221 3953 % 10° kN,

(2H)? S (H)*
~1
TC2D02 - 1 TEZDlz
M= == +=] + = 1.861 x 10° kN, (41)
(3H) S (3H)

-1
D, 1 ’D
M= 255 ) 4o | 52 =3.004 x 10° kN.
(5H) 53 (34)

These results are identical to the theoretical values calculated by the equations of Hegedis and Kollar
(1999).

The buckling loads were also calculated with the aid of other replacement beam models. The fourth
column of Table 6 shows the results in case of simple summation of the stiffnesses of lateral load-resisting
subsystems (each replaced by a sandwich beam). The last two columns of Table 6 present the results when
the lateral load-resisting subsystems are replaced by thin-walled beams and by Timoshenko-beams, res-
pectively (the replacement stiffnesses are calculated by Egs. (15) and (16)). The errors given in Table 7
shows that—as a rule—only the accuracy of the replacement sandwich beam is adequate for practical
purposes.

8.2. Unsymmetrical structure

The geometrical and material properties of the structure are given in Fig. 10b. The building is stiffened by
a shear wall, coupled shear walls, and a frame as shown in Fig. 10b. We wish to determine the circular
frequencies of the first three modes of vibration. The lateral load-resisting subsystems of the unsymmetrical
structure are identical to those of the symmetrical structure (Section 8.1), the replacement stiffnesses are
given by Eq. (39). The structure has one plane of symmetry (x—y). The structure vibrates either in the plane
of symmetry (Section 5) or spatial, lateral-torsional vibration occurs (Section 6).

In the symmetry plane the circular frequencies can be calculated from Eq. (40) independently of the
spatial vibration modes. The results for the first three modes are given in Table 8.

Table 6

Theoretical values of buckling loads (kN) of the symmetrical structure (Fig. 10), and the results of four different approximations
Mode Exact Sandwich beam Summation of stiffnesses Thin-walled beam Timoshenko-beam
1 3.953 x 10* 3.953 x 10* 4.947 x 10* 3.646 x 10* 2.952 x 10*
2 1.861 x 10* 1.861 x 10* 2.115 x 10* 1.585 x 10* 3.197 x 10*
3 3.004 x 10* 3.004 x 10* 3.178 x 10* 2.237 x 10* 3.688 x 10*

Table 7

Errors in the buckling loads of the four approximations
Mode Sandwich beam Summation of stiffnesses Thin-walled beam Timoshenko-beam
1 0% 25.15% =7.77% -25.32%
2 0% 13.65% —14.83% 71.79%

3 0% 5.79% -25.53% 22.77%
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Table 8
Comparison of the numerical and approximate results for the circular frequencies of the unsymmetrical structure given in Fig. 10
Mode Direction Approximation ETABS Error (%)
1 Spatial vibration 0.07834 0.07272 7.73
1 x—y plane 0.1095 0.1095 0.00
1 Spatial vibration 0.2187 0.2263 -3.36
2 Spatial vibration 0.2459 0.2202 11.67
2 x—y plane 0.6828 0.6813 0.22
2 Spatial vibration 1.077 1.028 4.77
3 Spatial vibration 0.4154 0.3919 6.00
3 x—y plane 1.895 1.887 0.24
3 Spatial vibration 2.2974 2314 -0.72

To calculate the circular frequencies of the coupled vibration modes first we determine the replacement
stiffness matrices (Section 6). The stiffness matrices of the individual lateral load-resisting subsystems are

(D5 0 0 Df 00 s 0 0
Dy =10 0 0f, D=0 0 0f, [ =|0 ¢ 0],
L0 0 0 0 00 0 0 &
Dy 0 0 DY 0 0 Y0 0
DI,=10 0 Of, [DI],=]0 0 0|, [S",=|0 ¢ 0f, (42)
[0 00 0 00 0 0 ¢
[Df 0 0 D0 0 st 0 0
Dy =10 0 0of, [Dfs=]0 0 0]7 S =10 & 0,
L0 0 0 0 00 0 0 ¢
D, =Dy.

(Because of numerical considerations we replaced the zero elements in the main diagonal of the shear
stiffness matrices by a small element ¢ (¢ > 0).)

The matrices of the transformation from the local (y—{) coordinate systems into the y—z coordinate
system are

1 0 -8 0 -1 0 1 0 8
7], =[T=10 1 0|, [TL=["=|1 0 o0f, [T=[1"=|0 1 0]. (43)
00 1 0 0 1 00 1
For /, = 2H Eq. (28) yields
[ 7.362 0  —37.93
[4] = 10" x 0 20776 0 |,
| -3793 0 471.1
[5.556 0 10.89
B]=10"x| 0 7.865x1072 0 |, (44)
| 10.89 0 356.2
[9.966 0 66.94
[C]=10%x| 0 2978x105 0
| 66.94 0 637.8
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The stiffness matrices of the replacement beam are (Eq. (27))

1248 0 0
Dy=10"x | 0 02087 0 |kNm?
0 0  79.87

5210 0 —41.52
D=10x| 0 0 0 |kNm?
—41.52 0 3335
1485 0  —10.99
S=10x| 0 5417 0 |kN,
~1099 0  95.04

; (45)

D, = 1.733 x 10° Nm>.

The circular frequencies of the lateral-torsional vibration modes can be determined as the eigenvalues of
the following equation (Potzta, 2002):

H* IV - M, 15 2 oo
Ku_ D 21T 4D+ 6] - o] § e (=0, (46)
l100751
ug; and pg; for the first three modes are given in Table 3, H is the total height of the building (H = 91.5 m),
matrices [M] and [G] are
1 0 Y 0 0 0
M]=1(0 1 Zy , [Gl=10 0 0], (47)
Y Zm 2+ 42 0 0 D,

m is the mass per unit height (m = 3.058 x 10° kg/m), and @ is the polar moment of mass (per unit height)
about the mass center (Fig. 10), y,, z, are the coordinates of the mass center. In this example symmetrical
mass distribution was considered, thus y,, = 0 and z,, = 0, ©® = m(a® + b*)/12 = 4.128 x 10" kgm?/m. The
approximate values of the first three circular frequencies, and the results of the ETABS calculation are
given in Table 8. The maximum error is less then 12%.

9. Discussion

We presented the stiffnesses of the replacement beam of the stiffening system of building structures. By
using an energy approach we derived formulas which show the contribution of the stiffnesses of the indi-
vidual lateral load-resisting subsystems to the overall stiffnesses of the structure. We took the shear de-
formation not only in the in-plane problem but also in torsion into account.

Numerical examples were presented to show the usefulness of the replacement beam.
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