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Abstract

In this paper replacement beams of building structures are developed, and the stiffnesses of the replacement beams are

derived. The analysis is robust and can be used for slender and wide structures consisting of frames, trusses, shear walls,

or coupled shear walls. The utility of the derived replacement beam is demonstrated through the examples of the in

plane and flexural–torsional buckling and vibration analyses of high-rise buildings.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Analysis of high-rise building structures stiffened by shear walls, trusses, coupled shear walls, and frames

requires time consuming numerical computations. The designer may be well served by approximate

methods, which (i) can be used in the preliminary design when some of the structural dimensions are not yet

known, (ii) can verify the results of the more advanced numerical calculation, and, last but not least (iii) can

shed light on the behavior of the structure which may lead to a better design.

One of the most widely used approximate calculations is based on the ‘‘continuum method’’ (Zalka,
2000b), when the stiffened building structure is replaced by a (continuous) beam.

The simplest replacement beam is a thin-walled beam, characterized by the bending stiffnesses (D0yy ;
D0zz;D0yz), the warping stiffness (Dx) and the torsional stiffness (Dt). When only a plane problem is con-

sidered, torsion is excluded, and the only parameter that plays a role is the bending stiffness D0 ¼ D0yy in the

x–z symmetry plane. This model is adequate only for solid and slender shear walls.

When a truss is loaded laterally, it may show, depending on the stiffnesses of the elements, bending

(flexural) deformation, shear deformation, or the mixture of those (Fig. 1).
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Hence the shear deformation must be included and the replacement continuum is a Timoshenko-beam

(Timoshenko and Gere, 1961), characterized by the bending (D0 ¼ D0yy) and the shear stiffnesses (S ¼ Szz) in
the x–z plane. The bending and the shear stiffnesses of typical structures are given e.g. in Timoshenko and

Gere (1961), Stafford Smith and Coull (1991) and K€oopecsiri and Koll�aar (1999a,b) and are listed in Table 1.

Neither a thin-walled beam, nor a Timoshenko-beam is adequate to characterize a frame, or coupled

shear walls. The replacement beam can be obtained by ‘‘smearing out’’ the beams of the frame along the

height, and thus we arrive at the model shown in Fig. 2, which is a sandwich beam (Skattum, 1971).

The stiffnesses of the replacement sandwich beam are also included in Table 1 (Heged}uus and Koll�aar,
1999; Szer�eemi, 1978; Csonka, 1965; Beck, 1962), D0 is the global bending stiffness, Dl is the local bending
stiffness, and S is the shear stiffness).

It is important to note that a sandwich beam with stiffnesses D0, Dl, and S is equivalent to a Timoshenko-

beam (with stiffnesses D0 and S) which is supported laterally by a beam with bending stiffness Dl (Fig. 2).

Hence, if we set the stiffness Dl of a sandwich beam equal to zero we obtain a Timoshenko-beam with

stiffnesses D0 and S.
Continuum models were developed by several authors and it was applied successfully for building

structures subjected to wind loads (Csonka, 1965; Stafford Smith and Coull, 1991; Szer�eemi, 1978; Zalka,

2000a,b), earthquakes (Basu, 1983; Basu et al., 1984; K€oopecsiri and Koll�aar, 1999a,b; Koll�aar, 1991; Stafford
Smith and Coull, 1991), in the dynamic analysis (Ng and Kuang, 2000; Rosman, 1973, 1974; Skattum,

1971; Zalka, 1993, 1994, 2000a,b, 2001), and in the stability analysis (Heged}uus and Koll�aar, 1999; Li, 2000;
Rosman, 1973, 1974; Stafford Smith and Coull, 1991; Zalka, 1998, 1999, 2000a,b; Zalka and Armer, 1992).

However, there are two important problems to be solved:

(i) As we stated before the replacement beam of a single lateral load-resisting subsystem (truss, frame,

shear wall, etc.) is given in the literature (see Table 1). When there are several parallel lateral load-resisting

subsystems which are connected horizontally along the height the question arises: how can they be replaced

by only one replacement beam? We find answers only for the following special cases in the literature: (a)
When each lateral load-resisting subsystem is a solid wall (their shear deformation is neglected) the re-

placement beam is a beam which undergoes bending deformation only, and its bending stiffness is the sum

of the bending stiffnesses of the individual walls. (b) When there are frames which can be modeled as beams

undergo shear deformation only and solid walls undergo bending deformation only, the replacement beam

has two stiffnesses (with the sandwich notation Dl and S, while D0 is infinite), the bending stiffness is the sum

of the bending stiffnesses of the walls, while the shear stiffness is the sum of the shear stiffnesses of the

frames. However, when any of the lateral load-resisting subsystem undergoes both bending and shear

deformation (which is the case of trusses, coupled shear walls, tall frames, and for wide walls) it can be
shown that simple summation (S ¼

P
Sk, D0 ¼

P
D0k, Dl ¼

P
Dlk) may result in a structure which is stiffer

Fig. 1. Flexural deformation, shear deformation, and mixed deformation.
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by orders of magnitudes than the ‘‘real’’ structure. We will show in Section 5 how the replacement stiff-
nesses of the building should be calculated.

(ii) As an example let us consider a structure the cross-section of which is shown in Fig. 4. When the

structure is subjected to torsion, in the two parallel trusses both shear and bending deformations occur. The

Table 1

Replacement stiffnesses of different lateral load-resisting subsystems of high-rise buildings

Structure Replacement continuum stiffnesses

Wall
Timoshenko-beam

D0 ¼ EI I ¼ b3t
12

S ¼ AG
q

¼ AG
1:2

A ¼ bt

Trusses
Timoshenko-beam

D0 ¼ 1
2
EAcL2 D0 ¼ 1

2
EAcL2

S ¼ 2EhL2Ad
d3

S ¼ 2Eh
2d3
L2Ad

þ L
4Ab

The shear stiffness of trusses

with other type of bracing can

be found in the literature.

Frame Sandwich beam

Dl ¼
Pn

i¼0 EIci

D0 ¼
Pn

i¼0 EAcic
2
i

S ¼ ðS�1
b þ S�1

c Þ�1

Sb ¼
Pn

i¼1
12EIbi
lih

;

Sc ¼
Pn

i¼0
12EIci
h2

Coupled shear wall Sandwich beam

Dl ¼
Pn

i¼0 EIci

D0 ¼
Pn

i¼0 EAcic
2
i

S ¼ ðS�1
b þ S�1

c Þ�1

Sb ¼
Pn

i¼1
6EIbi ½ðdiþsiÞ2þðdiþsiþ1Þ2 �

d3i h 1þ12qEIbi
Gd2
i
Abi

� �

Sc ¼
Pn

i¼0
12EIci
h2
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classical (Vlasov) theory of beams does not include the shear deformation in torsion with warping and,
hence, its application may significantly overestimate the torsional stiffness of the structure. This problem,

for arbitrary arrangements of the walls, will be addressed in Section 6.

2. Problem statement

We consider a building structure, that consists of an arbitrary combination of lateral load-resisting

subsystems, i.e. shear walls, coupled shear walls, frames, trusses and cores. The arrangement of the stiffen-

ing system is either symmetrical or arbitrary (Fig. 5).

Our aim is to obtain a replacement beam model and its replacement stiffnesses which can be used in the

wind, earthquake, or stability analyses of the building structure.

The application of the continuum method for the earthquake analysis of building structures can be found

in Potzta (2002). The method is also applicable for replacement beams with varying cross-section using a
simple approximation given in Potzta and Koll�aar (1999).

Fig. 2. Replacement beam of a frame (a), the sandwich beam is equivalent to a Timoshenko-beam supported by a beam with bending

deformation only (b).

Fig. 4. Plan of a building stiffened by three lateral load-resisting subsystems.

Fig. 3. Parallel lateral load-resisting subsystems and the replacement sandwich beam.
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3. Basic assumptions

We assume that the material behaves in a linearly elastic manner.

The floors are considered to be rigid in their plane and they transfer only horizontal forces but no

bending or vertical forces to the lateral load-resisting subsystems. In addition, we assume that the floors

connect the stiffening system ‘‘continuously’’, hence each cross-section of the building remains undeformed

in the horizontal plane during loading.

4. Error in the analysis

The total error of the suggested method comes from two sources:

(i) Each lateral load-resisting subsystem is replaced by a continuous cantilever beam. The accuracy of this

replacement can be found in the literature (Stafford Smith and Coull, 1991; Zalka and Armer, 1992;

Zalka, 2000a,b). It is recommended that the building must have at least four stories (Zalka, 2000b).

(ii) These beams are then replaced by a single replacement sandwich beam. The error was investigated nu-

merically in Potzta (2002) and it is illustrated in Section 8. It was found that this approximation results
an error which is about 5%.

5. Plane problem

In this section we consider symmetrical stiffening systems which deform only in the plane of symmetry

(x–z plane). The floors connect the lateral load-resisting subsystems continuously, hence the horizontal

displacements of the lateral load-resisting subsystems are identical.

5.1. One lateral load-resisting subsystem

As it was stated in the Introduction, the replacement beam of a lateral load-resisting subsystem is a

sandwich beam. The replacement stiffnesses are summarized in Table 1.

For latter use we define the strain energy of a sandwich beam (Allen, 1969):

U ¼ UT þ Ul; ð1Þ
where

UT ¼ 1

2

Z
ðSc2 þ D0ðv0Þ2Þdx; Ul ¼

1

2

Z
Dlðw00Þ2 dx: ð2Þ

Fig. 5. Symmetrical (a) and unsymmetrical (b) arrangements of the lateral load-resisting subsystems.
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Here UT and Ul are the strain energies of a Timoshenko-beam (stiffnesses D0 and S) and of a beam with

bending deformation only (stiffness Dl), respectively. w is the displacement in the x–z plane, v is the rotation

of the cross-section in the x–z plane, and c is the shear strain. Prime denotes derivative with respect to x. v
and c are related to the displacement w by

w0 ¼ v þ c: ð3Þ
It can be shown (Heged}uus and Koll�aar, 1999) that in a sandwich beam:

c ¼ �D0

S
v00: ð4Þ

5.2. Several lateral load-resisting subsystems

In this section we consider n lateral load-resisting subsystems (Fig. 3). The kth element has the stiffnesses

D0k, Dlk, and Sk. The stiffnesses of the beam which replaces the n lateral load-resisting subsystems are de-

noted by D0, Dl, and S.
We determine the replacement stiffnesses by applying a sinusoidal displacement on the stiffening system

which is caused by a sinusoidal horizontal load (Fig. 6).

Then we equate the sum of the strain energies of the individual lateral load-resisting subsystems to the

strain energy of the replacement wall. Hence (see Eq. (1)) we write

1

2

Z
ðSc2 þ D0ðv0Þ2 þ Dlðw00Þ2Þdx ¼ 1

2

Z Xn
k¼1

ðSkc2k þ D0kðv0
kÞ

2 þ Dlkðw00
kÞ

2Þdx; ð5Þ

wk, ck, and vk are the displacement, the shear strain, and the rotation of cross-section of the kth lateral load-

resisting subsystem, and w, c, and v are the displacement, the shear strain, and the rotation of cross-section

of the replacement beam, respectively. The horizontal displacements of the lateral load-resisting subsystems

are identical, hence we can write

w1 ¼ w2 ¼ 	 	 	 ¼ wn ¼ w: ð6Þ
We apply the displacements

w ¼ w0 sin
p
l
x; v ¼ v0 cos

p
l
x ð7Þ

on the beam. Eqs. (3), (4), and (7) yield

v ¼
p
l

1þ p2

l2
D0

S

w0 cos
p
l
x; c ¼ p2

l2
D0

S
v: ð8Þ

Fig. 6. The load and the deformations of a sandwich beam subjected to a sinusoidal load.
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By introducing Eqs. (6)–(8) into Eq. (5) and performing the integration between 0 and l we obtain

Dl þ
D0

1þ p2D0

l2S

¼
Xn
k¼1

Dlk

 
þ D0k

1þ p2D0k
l2Sk

!
: ð9Þ

When l is large c is small (see Eq. (8)) and Eq. (9) results in

Dl þ D0 ¼
Xn
k¼1

ðDlk þ D0kÞ: ð10Þ

As a consequence we may state that for large l the replacement beam is a beam which undergoes bending

deformation only.

The Taylor series expansion of the function 1=ð1þ p2D0=ðl2SÞÞ with respect to 1=l2 about 1=l20 is

1

1þ p2D0

l2S

¼ 1

1þ p2D0

l2
0
S

�
p2D0

S

1þ p2D0

l2
0
S

� 	2 1

l2

�
� 1

l20

�
þ

p2D0

S

� 	2
1þ p2D0

l2
0
S

� 	3 1

l2

�
� 1

l20

�2

� 	 	 	

¼
X1
i¼0

� p2D0

S

� 	i
1þ p2D0

l2
0
S

� 	iþ1

1

l2

�
� 1

l20

�i
: ð11Þ

Introducing Eq. (11) into Eq. (9) yields

Dl þ
X1
i¼0

D0 � p2D0

S

� 	i
1þ p2D0

l2
0
S

� 	iþ1

1

l2

�
� 1

l20

�i
¼
Xn
k¼1

Dlk

0
B@ þ

X1
i¼0

D0k � p2D0k
Sk

� 	i
1þ p2D0k

l2
0
Sk

� 	iþ1

1

l2

�
� 1

l20

�i1CA:

When l is close to l0 the terms multiplied by ð1=l2 � 1=l20Þ
i ði ¼ 1; 2; . . .Þ vanish and we have

Dl þ
D0

1þ p2D0

l2
0
S

¼
Xn
k¼1

Dlk

0
@ þ D0k

1þ p2D0k
l2
0
Sk

1
A: ð12Þ

To obtain a good agreement between the replacement beam and the structure the first three terms in the

series are considered. By equating the first term in the series we obtain Eq. (12), while from the second and

third terms we have

D0

1þ p2D0

l2
0
S

� 	2 p2D0

S
¼
Xn
k¼1

D0k

1þ p2D0k
l2
0
Sk

� 	2 p2D0k

Sk
; ð13Þ

D0

1þ p2D0

l2
0
S

� 	3 p2D0

S

� �2

¼
Xn
k¼1

D0k

1þ p2D0k
l2
0
Sk

� 	3 p2D0k

Sk

� �2

: ð14Þ

Eqs. (12)–(14) can be rearranged to yield the replacement stiffnesses of the beam:

S ¼ p2 B
3

C2
; D0 ¼

1
C
B2 � 1

l2
0

C2

B3

; Dl ¼ A� B
2

C
; ð15Þ
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where

A ¼
Xn
k¼1

D0k

1þ p2D0k
l2
0
Sk

0
@ þ Dlk

1
A;

B ¼
Xn
k¼1

D0k

1þ p2D0k
l2
0
Sk

� 	2 p2D0k

Sk
;

C ¼
Xn
k¼1

D0k

1þ p2D0k
l2
0
Sk

� 	3 p2D0k

Sk

� �2

:

ð16Þ

The choice of l0 to obtain the ‘‘best’’ replacement stiffnesses will be discussed in Section 7.

6. Spatial problem

As it was stated in the Introduction, the beam undergoes both shear and bending (flexural) deformations
in torsion. We adopt here the beam theory given in Koll�aar (2001a,b) (which was developed for composite

beams and which is the simplification of Sun and Wu�s theory (Wu and Sun, 1992)). Accordingly, the

displacements of the beam are described by the vectors

fug ¼
v
w
w

8<
:

9=
;; fvg ¼

vy
vz
#B

8<
:

9=
;; ð17Þ

while the shear deformations are

fcg ¼
cy
cz
#S

8<
:

9=
;: ð18Þ

v and w are the displacements in the y and z directions, w is the rotation of the cross-section about the x axis,
vy and vz are the rotations of the cross-section about the z and y axes, respectively. The total twist per unit
length (#) contains a shear type (#S) and a bending type (#B) deformation (Fig. 7):

# ¼ w0 ¼ #B þ #S:

(We note that in Vlasov�s theory cy ¼ cz ¼ #S ¼ 0 and fug0 ¼ fvg.) The shear deformations are related to

the displacements by (see Koll�aar, 2001a,b)

Fig. 7. Bending (#B) and shear (#S) deformation in torsion.
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fug0 ¼
v0

w0

w0

8<
:

9=
; ¼ fvg þ fcg: ð19Þ

The strain energy of this beam is

UT ¼ 1

2

Z
fcgT

Syy Syz Syx
Szy Szz Szx
Sxz Sxy Sxx

2
4

3
5fcg

0
@ þ fvg0T

D0zz D0zy D0zx

D0yz D0yy D0yx

D0xz D0xy D0xx

2
4

3
5fvg0 þ Dt#

2

1
Adx: ð20Þ

In this equation D0yy ð¼ EIyyÞ, D0yz ð¼ EIyzÞ, D0zzð¼ EIzzÞ are the bending stiffnesses, D0xxð¼ EIxÞ is the

warping stiffness. (D0xz and D0xy are zero if the coordinate system is attached to the shear center see Section

6.3.) [S] is the shear stiffness matrix and Dt ð¼ GItÞ is the torsional stiffness. f gT denotes the transpose of

vector { }.

The above beam theory is the generalization of the ‘‘Timoshenko-beam’’ theory for spatial problems. For
our case, as in the plane problem, the local stiffnesses must also be included, and the strain energy becomes

U ¼ UT þ Ul; ð21Þ
where Ul is the strain energy of a beam which undergoes bending deformation only:

Ul ¼
1

2

Z
fug00T

Dlzz Dlzy Dlzx

Dlyz Dlyy Dlyx

Dlxz Dlxy Dlxx

2
4

3
5fug00 dx: ð22Þ

Here fug is the displacement vector (Eq. (17)), and Dlij are the (local) bending stiffnesses.

6.1. One lateral load-resisting subsystem

First we consider a single lateral load-resisting subsystem (Fig. 8).
The stiffness matrices of this bracing element in the g–f coordinate system are ½Dg–f

0 �k, ½D
g–f
l �k and ½Sg–f�k,

and the torsional stiffness is Dg–f
tk . The transformation of the stiffnesses into the y–z coordinate system gives

½Dl�k ¼ ½T �Tk ½D
g–f
l �k½T �k;

½D0�k ¼ ½T �Tk ½D
g–f
0 �k½T �k;

½S�k ¼ ½T �Tk ½Sg–f�k½T �k;
ð23Þ

Fig. 8. Global coordinates ðy; zÞ and the local coordinates ðg; fÞ attached to the kth lateral load-resisting subsystem.
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where

½T �k ¼
cos ak � sin ak rkg
sin ak cos ak rkf
0 0 1

2
4

3
5; ð24Þ

ak is the angle between the axes g and y; rkg and rk1 are the distances of the g and f axes from the origin (Fig.

8).

6.2. Several lateral load-resisting subsystems

To obtain the replacement stiffnesses of a stiffening system containing several lateral load-resisting

subsystems we assume the displacements in the form of

fug ¼
v0
w0

w0

8<
:

9=
; sin

p
l
x; fvg ¼

vy0
vz0
#B0

2
4

3
5 cos p

l
x; ð25Þ

and introduce them into the expression of the strain energy of the replacement beam (Eq. (21)) and into the
sum of the strain energies of the individual elements. By equating them we obtain

1

2

Z
ðfcgT½S�fcg þ fvg0T½D0�fvg0 þ fug00T½Dl�fug00 þ Dt#

2Þdx

¼ 1

2

Z Xn
k¼1

ðfckg
T½Sk�fckg þ fvkg

0T½D0k�fvkg
0 þ fukg00T½Dlk�fukg00 þ Dtk#

2Þdx: ð26Þ

Then we follow the same steps as in Section 5.2. The algebra is involved but straightforward and is not
presented here. The results are

½S� ¼ p2½B�½C��1½B�½C��1½B�;

½D0� ¼ ½B�½C��1½B� ½E�
�

� 1

l20
½B��1½C�

��1

;

½Dl� ¼ ½A� � ½B�½C��1½B�;

Dt ¼
Xn
k¼1

Dtk;

ð27Þ

where

½A� ¼
Xn
k¼1

½E�
� 

þ p2

l20
½D0�k½S�

�1

k

��1

½D0�k þ ½Dl�k

!
;

½B� ¼
Xn
k¼1

p2 ½E�
�

þ p2

l20
½D0�k½S�

�1

k

��1

½D0�k½S�
�1

k ½E�
�

þ p2

l20
½D0�k½S�

�1

k

��1

½D0�k;

½C� ¼
Xn
k¼1

p4 ½E�
�

þ p2

l20
½D0�k½S�

�1

k

��1

½D0�k½S�
�1

k


 ½E�
�

þ p2

l20
½D0�k½S�

�1

k

��1

½D0�k½S�
�1

k ½E�
�

þ p2

l20
½D0�k½S�

�1

k

��1

½D0�k:

ð28Þ

We observe that Eq. (27) reduces to Eq. (15) when ½D0�, ½Dl�, and ½S� are replaced by D0, Dl and S.
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6.3. Location of the replacement beam

The elements of the stiffness matrices ½D0�, ½Dl� and ½S� depends on the choice of the location of the axis of

the replacement beam which passes through the origin of the coordinate system.
In the analysis the location of the axis can be chosen arbitrarily. (The stiffnesses, loads, coordinates of the

mass center are influenced by the location, however the eigen frequency, buckling loads, internal forces are

not.)

There is a special location of the origin called shear center (or more precisely the ‘‘bending deformation

shear center’’ (Koll�aar, 2001a,b)). When the origin of the coordinate system is attached to the bending

deformation shear center the stiffness matrix ½D0� simplifies and D0zx and D0yx are zero. However, this

choice of the origin simplifies the analysis only when the shear deformation is neglected (shear stiffnesses are

infinite), because in this case the load applied at the shear center does not cause the twist of the building.
As a rule, when the beam undergoes both bending and shear deformations there is no such location and

the beam may twist even if the load is applied at the bending deformation shear center.

However for a given load and boundary conditions we may define a location (which varies with the

height) such a way that the load acting at this location do not cause the twist of the building.

When the building is symmetrical, the load which is applied in the symmetry plane does not cause

twist, and hence it is practical (however not necessary) to place the axis of the beam at the symmetry

plane.

7. Practical considerations

In Sections 5.2 and 6.2 we obtained a replacement beam whose stiffnesses depend on the choice of l0.
When l0 is approximately equal to the variation of the load (see Fig. 6) the behavior of the replacement

beam will be very close to the behavior of the structure. Consequently different replacement beams should

be applied for different loading conditions.

The question arises, how should we choose l0 to obtain the ‘‘best’’ replacement beam. We suggest for a

few cases the values l0 which are given in Fig. 9.

We note that there are practical cases when the stiffnesses of the replacement beam are not sensitive to the

choice of l0 and hence the same replacement beam can be used for different loading conditions.

When D0i=Si � D0j=Sj or Sil20 � D0i Eqs. (15) and (16) become

S ¼ B3

C2
; ð29Þ

D0 ¼
B2

C
; ð30Þ

Dl ¼
Xn
k¼1

ðD0k þ DlkÞ � D0; ð31Þ

where

B ¼
Xn
k¼1

D2
0k

Sk
; C ¼

Xn
k¼1

D3
0k

S2k
: ð32Þ

Note that these equations are identical to Eqs. (15) and (16) when l0 ! 1.
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When Sil20 � D0i Eqs. (15) and (16) become

S ¼
Xn
k¼1

Sk; D0 ¼ 1; Dl ¼
Xn
k¼1

Dlk: ð33Þ

These simplifications can be carried out also in case of spatial problems: When ½D0�i½S�
�1

i � ½D0�j½S�
�1

j or
½S�il20 � ½D0�i Eqs. (27) and (28) become

½S� ¼ ½B�½C��1½B�½C��1½B�; ð34Þ

½D0� ¼ ½B�½C��1½B�; ð35Þ

½Dl� ¼
Xn
k¼1

ð½D0�k þ ½Dl�kÞ � ½D0�; ð36Þ

where

½B� ¼
Xn
k¼1

½D0�k½S�
�1

k ½D0�k; ½C� ¼
Xn
k¼1

½D0�k½S�
�1

k ½D0�k½S�
�1

k ½D0�k: ð37Þ

For ½S�il20 � ½D0� Eqs. (27) and (28) become

½S� ¼
Xn
k¼1

½S�k; ½D0� ¼ 1; ½Dl� ¼
Xn
k¼1

½Dl�k: ð38Þ

Fig. 9. The values of l0 for lateral load, buckling and vibration.
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8. Numerical examples

To demonstrate the utility of the replacement beam we consider two simple examples shown in Fig. 10.

8.1. Doubly symmetrical structure

The structure is stiffened by two coupled shear walls, a frame, and two shear walls (Fig. 10a). We

wish to determine in the x–z symmetry plane: (i) the circular frequencies of the structure when the mass

is distributed uniformly along the floors, and (ii) the buckling loads when the load is applied at the
top.

Fig. 10. Numerical example: (a) symmetrical structure, (b) unsymmetrical structure, (c) lateral load-resisting subsystems.
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The replacement stiffnesses of the lateral load-resisting subsystems are (see Table 1):

Df
l ¼

X3
i¼0

EIci ¼ 4
 1:95
 1010 
 1:33
 10�4 ¼ 1:040
 107 Nm2;

Df
0 ¼

X3
i¼0

EAcic2i ¼ 2
 1:95
 1010 
 0:04
 ð22 þ 62Þ ¼ 6:240
 1010 Nm2;

Sb ¼
X3
i¼1

12EIbi
lih

¼ 3
 12
 1:95
 1010 
 1:33
 10�4

4
 3:05
¼ 7:672
 106 N;

Sc ¼
X3
i¼0

12EIci
h2

¼ 4
 12
 1:95
 1010 
 1:33
 10�4

3:052
¼ 1:342
 106 N;

Sf ¼ ðS�1
b þ S�1

c Þ�1 ¼ 4:881
 106 N;

Dw
l ¼ 0;

Dw
0 ¼ EIw ¼ 1:95
 1010 
 1:07 ¼ 2:087
 1010 Nm2;

Sw ¼ GAw
q

¼
1:95
1010

2
1:2

 0:8

1:2
¼ 5:42
 109 N;

Dw
t ¼ GItw ¼ 1:95
 1010

2
 1:2

 1:07
 10�2 ¼ 1:733
 108 Nm2;

Dc
l ¼

X1
i¼0

EIci ¼ 2
 1:95
 1010 
 1:33
 10�1 ¼ 5:200
 109 Nm2;

Dc
0 ¼

X1
i¼0

EAcic2i ¼ 2
 1:95
 1010 
 0:4
 22 ¼ 6:240
 1010 Nm2;

Sb ¼
6EIb½ðd þ s1Þ2 þ ðd þ s2Þ2�

d3h 1þ 12qEIb
Gd2Ab

� 	 ¼ 6
 1:95
 1010 
 1:07
 10�3 
 2
 ð2þ 2Þ2

23 
 3:05 1þ 12
1:2
1:95
1010
1:07
10�3

1:95
1010=2:4
22
0:08

� 	
¼ 1:468
 108 N;

Sc ¼
X1
i¼0

12EIci
h2

¼ 2
 12
 1:95
 1010 
 1:33
 10�1

3:052
¼ 6:708
 109 N;

Sc ¼ ðS�1
b þ S�1

c Þ�1 ¼ 1:436
 108 N;

ð39Þ

where superscript f, w, and c refers to the frame, to the walls, to the coupled shear walls, respectively.

The structure is symmetrical, thus the replacement stiffnesses of the structure can be calculated from Eqs.

(15) and (16). We choose l01 ¼ 2H , l02 ¼ 2
3
H , and l03 ¼ 2

5
H in the analysis of the first, second and third mode

of vibration, respectively (see Fig. 9). The results are given in Table 2.

Using the replacement stiffnesses we approximate the circular frequencies, xi (in the x–z symmetry plane)

as follows (Potzta, 2002):

x2
i ¼

1

ðxB0
i Þ2

 
þ 1

ðxS
i Þ

2

!�1

þ ðxBl
i Þ

2 ¼ 1

l2
Bi

D0i
mH4

 
þ 1

l2
Si

Si
mH2

!�1

þ l2
Bi

Dli

mH 4
; ð40Þ

where lBi and lSi for the first three modes are given in Table 3, the mass, M , and the total height of the
building, H are given in Fig. 10. The approximate value of the circular frequencies (Eq. (40)) and the results
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of a finite element calculation (using the ETABS program) are summarized in the second and third columns

of Table 4, respectively. The maximum error is less then 5% (Table 5).

For comparison we calculated the circular frequencies also with the aid of other replacement beam

models. The fourth column of Table 4 shows the results in case of simple summation of the stiffnesses of
lateral load-resisting subsystems (each replaced by a sandwich beam). The last two columns of Table 4

present the results when the lateral load-resisting subsystems are replaced by thin-walled beams and by

Timoshenko-beams, respectively (the replacement stiffnesses are calculated by Eqs. (15) and (16)). The

errors are given in Table 5.

The buckling loads of the structure (when the load is applied at the top) also can be approximated using

the replacement stiffnesses (Koll�aar, 2001a,b). Buckling loads in the x–z symmetry plane are

Table 2

Replacement stiffnesses of the symmetrical structure given in Fig. 10

Mode i ¼ 1 i ¼ 2 i ¼ 3

l0i 2H 2
3
H 2

5
H

A (
1011 kNm2) 1.341 0.7018 0.4077

B (
1014 kNm4) 7.669 1.220 0.3119

C (
1017 kNm6) 107.6 2.535 0.3120

D0i (
1010 kNm2) 9.406 13.29 13.08

Dli (
1010 kNm2) 7.950 1.149 1.047

Si (
107 kN) 3.841 27.87 29.06

Table 3

The values of the multiplier, li for the calculation of the circular frequencies

Deformation Mode

1 2 3

Bending (mB1) 3.52 22.03 61.7

Shear (mS1) 0.5p 1.5p 2.5p

Table 4

Circular frequencies (1/s) of the symmetrical structure (Fig. 10) using a finite element program (ETABS), and the results of four

different approximations

Mode ETABS Sandwich beam Summation of stiffnesses Thin-walled beam Timoshenko-beam

1 0.2649 0.2607 0.290 0.249 0.536

2 1.206 1.265 1.349 1.168 1.663

3 2.708 2.690 2.767 2.32 2.980

Table 5

Errors in the circular frequencies of the four approximations

Mode Sandwich beam Summation of stiffnesses Thin-walled beam Timoshenko-beam

1 )1.59% 9.48% )6.00% 102.34%

2 4.89% 11.86% )3.15% 37.89%

3 )0.66% 2.18% )14.33% 10.04%
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N 1
cr ¼

p2D01

ð2HÞ2

 !�1
0
@ þ 1

S1

1
A

�1

þ p2Dl1

ð2HÞ2
¼ 3:953
 104 kN;

N 2
cr ¼

p2D02

2
3
H

� �2
 !�1

0
@ þ 1

S2

1
A

�1

þ p2Dl2

2
3
H

� �2 ¼ 1:861
 105 kN;

N 3
cr ¼

p2D03

2
5
H

� �2
 !�1

0
@ þ 1

S3

1
A

�1

þ p2Dl3

2
5
H

� �2 ¼ 3:004
 105 kN:

ð41Þ

These results are identical to the theoretical values calculated by the equations of Heged}uus and Koll�aar
(1999).

The buckling loads were also calculated with the aid of other replacement beam models. The fourth

column of Table 6 shows the results in case of simple summation of the stiffnesses of lateral load-resisting

subsystems (each replaced by a sandwich beam). The last two columns of Table 6 present the results when

the lateral load-resisting subsystems are replaced by thin-walled beams and by Timoshenko-beams, res-

pectively (the replacement stiffnesses are calculated by Eqs. (15) and (16)). The errors given in Table 7

shows that––as a rule––only the accuracy of the replacement sandwich beam is adequate for practical
purposes.

8.2. Unsymmetrical structure

The geometrical and material properties of the structure are given in Fig. 10b. The building is stiffened by

a shear wall, coupled shear walls, and a frame as shown in Fig. 10b. We wish to determine the circular

frequencies of the first three modes of vibration. The lateral load-resisting subsystems of the unsymmetrical
structure are identical to those of the symmetrical structure (Section 8.1), the replacement stiffnesses are

given by Eq. (39). The structure has one plane of symmetry (x–y). The structure vibrates either in the plane

of symmetry (Section 5) or spatial, lateral–torsional vibration occurs (Section 6).

In the symmetry plane the circular frequencies can be calculated from Eq. (40) independently of the

spatial vibration modes. The results for the first three modes are given in Table 8.

Table 7

Errors in the buckling loads of the four approximations

Mode Sandwich beam Summation of stiffnesses Thin-walled beam Timoshenko-beam

1 0% 25.15% )7.77% )25.32%
2 0% 13.65% )14.83% 71.79%

3 0% 5.79% )25.53% 22.77%

Table 6

Theoretical values of buckling loads (kN) of the symmetrical structure (Fig. 10), and the results of four different approximations

Mode Exact Sandwich beam Summation of stiffnesses Thin-walled beam Timoshenko-beam

1 3:953
 104 3:953
 104 4:947
 104 3:646
 104 2:952
 104

2 1:861
 104 1:861
 104 2:115
 104 1:585
 104 3:197
 104

3 3:004
 104 3:004
 104 3:178
 104 2:237
 104 3:688
 104
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To calculate the circular frequencies of the coupled vibration modes first we determine the replacement

stiffness matrices (Section 6). The stiffness matrices of the individual lateral load-resisting subsystems are

½Dg–f
0 �1 ¼

Dc
0 0 0

0 0 0

0 0 0

2
64

3
75; ½Dg–f

l �1 ¼
Dc

l 0 0

0 0 0

0 0 0

2
64

3
75; ½Sg–f�1 ¼

Sc 0 0

0 e 0

0 0 e

2
64

3
75;

½Dg–f
0 �2 ¼

Dw
0 0 0

0 0 0

0 0 0

2
64

3
75; ½Dg–f

l �2 ¼
Dw

l 0 0

0 0 0

0 0 0

2
64

3
75; ½Sg–f�2 ¼

Sw 0 0

0 e 0

0 0 e

2
64

3
75;

½Dg–f
0 �3 ¼

Df
0 0 0

0 0 0

0 0 0

2
64

3
75; ½Dg–f

l �3 ¼
Df

l 0 0

0 0 0

0 0 0

2
64

3
75; ½Sg–f�3 ¼

Sf 0 0

0 e 0

0 0 e

2
64

3
75;

ð42Þ

Dt ¼ Dw
t :

(Because of numerical considerations we replaced the zero elements in the main diagonal of the shear

stiffness matrices by a small element e (e > 0).)

The matrices of the transformation from the local (g–f) coordinate systems into the y–z coordinate

system are

½T �1 ¼ ½T �c ¼
1 0 �8

0 1 0

0 0 1

2
4

3
5; ½T �2 ¼ ½T �w ¼

0 �1 0

1 0 0

0 0 1

2
4

3
5; ½T �3 ¼ ½T �f ¼

1 0 8

0 1 0

0 0 1

2
4

3
5: ð43Þ

For l0 ¼ 2H Eq. (28) yields

½A� ¼ 1010 

7:362 0 �37:93

0 2:0776 0

�37:93 0 471:1

2
64

3
75;

½B� ¼ 1014 

5:556 0 10:89

0 7:865
 10�3 0

10:89 0 356:2

2
64

3
75;

½C� ¼ 1018 

9:966 0 66:94

0 2:978
 10�5 0

66:94 0 637:8

2
64

3
75:

ð44Þ

Table 8

Comparison of the numerical and approximate results for the circular frequencies of the unsymmetrical structure given in Fig. 10

Mode Direction Approximation ETABS Error (%)

1 Spatial vibration 0.07834 0.07272 7.73

1 x–y plane 0.1095 0.1095 0.00

1 Spatial vibration 0.2187 0.2263 )3.36
2 Spatial vibration 0.2459 0.2202 11.67

2 x–y plane 0.6828 0.6813 0.22

2 Spatial vibration 1.077 1.028 4.77

3 Spatial vibration 0.4154 0.3919 6.00

3 x–y plane 1.895 1.887 0.24

3 Spatial vibration 2.2974 2.314 )0.72
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The stiffness matrices of the replacement beam are (Eq. (27))

D0 ¼ 1011 

1:248 0 0

0 0:2087 0

0 0 79:87

2
64

3
75kNm2;

Dl ¼ 109 

5:210 0 �41:52

0 0 0

�41:52 0 333:5

2
64

3
75kNm2;

S ¼ 108 

1:485 0 �10:99

0 54:17 0

�10:99 0 95:04

2
64

3
75kN;

ð45Þ

Dt ¼ 1:733
 108 Nm2:

The circular frequencies of the lateral–torsional vibration modes can be determined as the eigenvalues of

the following equation (Potzta, 2002):

H 4

l2
Bi

½D0��1

�"
þ H

2

l2
Si

½S��1

��1

þ l2
Bi

H 4
½Dl� þ

l2
Si

H 2
½G� � x2

mim½M �
# v0m

w0m

w0m

8<
:

9=
; ¼ 0; ð46Þ

lBi and lSi for the first three modes are given in Table 3, H is the total height of the building (H ¼ 91:5 m),

matrices ½M � and ½G� are

½M � ¼
1 0 ym
0 1 zm
ym zm H

m þ y2m þ z2m

2
4

3
5; ½G� ¼

0 0 0

0 0 0
0 0 Dt

2
4

3
5; ð47Þ

m is the mass per unit height (m ¼ 3:058
 105 kg/m), and H is the polar moment of mass (per unit height)

about the mass center (Fig. 10), ym, zm are the coordinates of the mass center. In this example symmetrical

mass distribution was considered, thus ym ¼ 0 and zm ¼ 0, H ¼ mða2 þ b2Þ=12 ¼ 4:128
 107 kgm2/m. The

approximate values of the first three circular frequencies, and the results of the ETABS calculation are

given in Table 8. The maximum error is less then 12%.

9. Discussion

We presented the stiffnesses of the replacement beam of the stiffening system of building structures. By

using an energy approach we derived formulas which show the contribution of the stiffnesses of the indi-

vidual lateral load-resisting subsystems to the overall stiffnesses of the structure. We took the shear de-

formation not only in the in-plane problem but also in torsion into account.

Numerical examples were presented to show the usefulness of the replacement beam.
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